- Shevchuk, O. L., Maksyutina, N. P. and Litvinenko, V. I. (1968) Khim. Prir. Soedin. 4, 77.
- Glyzin, V. I., Ban'kovskii, A. T., Sheichenko, V. I. and Molodozhnikov, M. M. (1970) Khim. Prir. Soedin. 6, 762
- 8. Glyzin, V. I., and Ban'kovskii, A. I. (1974) Chem Abstr. **81**, 166325 g.
- 9. Otryashenkova, V. E., Glyzin, V. I. and Mashnin, A. I.
- (1977) Acta Pharm. Jugosl. 27, 131.
- 10. Bodalski, T. and Lamer, E. (1963) Diss. Pharm. 15, 319.
- Grimshaw, J. and Lamer-Zarawska, E. (1972) *Phytochemistry* 11, 3273.
- 12. Delle Monache, F., Cuca Suarez, L. E. and Marini-Bettolo, G. B. (1978) *Phytochemistry* 17, 1812.
- Asen, S., Stewart, R. N. and Norris, K. H. (1975) *Phytochemistry* 14, 2677.

Phytochemistry, 1980. Vol. 19, pp. 480-481. © Pergamon Press Ltd. Printed in England.

0031-9422/80/0301-0480 \$02.00/0

FLAVONE O- AND C-GLYCOSIDES OF RHYNCHOSIA BEDDOMEI

Dama Adinarayana*, Duvvuru Gunasekar*, Otto Seligmann† and Hildebert Wagner†

* Department of Chemistry, Sri Venkateswara University, Tirupati-517502, India; † Institut für pharmazeutische Arzneimittellehre der Universität München, Karlstraße 29, D-8000 München 2, W. Germany (Received 2 July 1979)

Key Word Index—Rhynchosia beddomei; Leguminosae; 3',4'-di-O-methylluteolin-7-O-glucuronide; vitexin; isovitexin; orientin: isoorientin; vicenin-2; lucenin-2; rutin; naringenin; p-inositol.

Abstract—A new flavone-O-glycoside isolated from the leaves of *Rhynchosia beddomei* has been characterized as 3',4'-di-O-methylluteolin-7-O-glucuronide.

INTRODUCTION

Plants belonging to the genus *Rhynchosia* (tribe Phaseoleae, subfamily Papilionoideae) have not been thoroughly examined for their flavonoid constituents. Besson *et al.* [1] reported the presence of four *C*-glycosylflavones in the leaves of *R.minima*. Based on the absence of flavonoid aglycones before or after acid hydrolysis, they concluded that only *C*-glycosides are present in this plant. In our chemical examination of the leaves of *R.beddomei* (Bak.) we have isolated six flavone-*C*-glycosides, a flavonol-*O*-glycoside, a new flavone-*O*-glycoside and a flavanone.

RESULTS AND DISCUSSION

Acetone extract of the leaves afforded, after repeated column chromatography employing silica gel, PC and TLC (cellulose and silica gel), four mono-C-glycosides (vitexin, isovitexin, orientin and isoorientin) and two di-C-glycosides established as vicenin-2 and lucenin-2 by mass spectral study of their permethylated derivatives. Methanol extract of the leaves yielded a cyclitol (identified as p-inositol), a flavanone (established as naringenin) and two O-glycosides. One of them was obtained as yellow needles (yield 0.002%) melting at 188–90° and showed identity with rutin. The second compound was obtained as pale

yellow crystals (yield 0.004%) [α]⁸¹ – 160.71° (c 0.56, Py-H₂O, 1:1 v/v) which did not melt below 320°. It gave a brown ferric colour, a positive Molisch's test and pale pink colour with Mg-HCl. It also effervesced with NaHCO₃.

A strong IR absorption at 1585 cm⁻¹ is characteristic for carboxylate. The flame test gives evidence for the presence of a potassium salt. According to the UV spectra, the flavone nucleus must bear protected OH groups in 7,3',4'-positions and a free 5-OH group. The aglycone peak at m/e 314 with the fragment ions at m/e 153 and 162 are in congruence with a 3',4'-di-Omethylluteolin structure. This was confirmed by hydrolysis and comparison of the aglycone with an authentic sample obtained by dehydrogenation of synthetic 3',4'-di-O-methyleriodictyol-7-Oneohesperidoside followed by hydrolysis [2]. The perdeuteromethylated glycoside showed a M^+ of m/e 575. The fragmentation sequence m/e 244, 210, 175, 147, 122 and 107 is typical for PDM-hexuronides [3]. All these data are in agreement with the structure of a 3',4'-di-O-methylluteolin-7-O-β-p-glucopyranuronide.

EXPERIMENTAL

Shade-dried leaves of *R.beddomei* (3.2 kg) were extracted successively with petrol (bp 60-80°), C_6H_6 , Me_2CO and

481

MeOH. The Me₂CO extract on repeated chromatography (PC and TLC) yielded six flavone-C-glycosides, which were identified as orientin, isoorientin, vitexin, isovitexin, lucenin-2 and vicenin-2 by chromatographic and mass spectral studies as well as by comparison with authentic samples. In addition, a new flavonol was isolated [4]. The methanolic extract on concn to ca 250 ml gave a brown solid (11.4 g). It was Soxhleted with MeOH and from the MeOH-soluble part initially a solid separated which on repeated crystallization with absolute ethanol containing a few drops of HOAc gave a crystalline solid (250 mg), mp 226-27° (inositol). Further concn of the MeOH-soluble part deposited a yellow-green solid which on recrystallization from MeOH yielded yellow needles (70 mg), mp 188-90° (rutin). After separation of the brown solid the methanolic extract was concentrated under red. pres. and the viscous residue treated with cold H₂O to remove H2O-soluble sugars (identified as glucose and fructose). The H₂O-insoluble material was then solvent fractionated with Et₂O, CHCl₃, Me₂CO, EtOAc and MeOH. The Et₂O-soluble part yielded a solid which separated from MeOH as a crystalline solid (42 mg), mp 248-49° (naringenin). The Me₂CO-soluble part was chromatographically separated to yield three C-glycosides identified as isoorientin, lucenin-2 and vicenin-2. The CHCl₃ and EtOAc extractions did not yield any crystalline principles.

3',4'-Di-O-methylluteolin 7-O-glucuronide. The MeOHsoluble part on concn yielded a yellow solid (120 mg) which did not melt below 320°. With alc. FeCl₂ it gave an initial pale green colour changing to brown. A pale pink colour was formed with Mg-HCl, Molisch's test was positive and it also gave effervescence with NaHCO₃ soln. $[\alpha]_D^{31}$ – 160.71; TLC (Cellulose); BAW (4:1:5) R_f 0.57, 15% aq. HOAc, R_f 0.34; The salt-free glucuronide (mp 189-190°) was prepared according to the method of ref. [5]. $C_{23}H_{22}O_{12}$ (508.42). (Found: C, 53.98; H, 5.04. Calc.: C, 54.33; H 4.76%). UV λ_{max}^{MeOH} nm: 250 (ϵ 134300), 270 (ϵ 119700) and (ϵ 154 700); $\lambda_{max}^{AlCl_3}$: 263, 275, 290, 355 and 382; $\lambda_{max}^{AlCl_3-HCl}$: 262, 275, 295, 362 and 385 (sh); $\lambda_{\text{max}}^{\text{NaOMe}}$: 280, 305 (sh), 395 (broad); $\lambda_{\text{max}}^{\text{NaOAc}}$: 250, 270 and 340. IR (KBr) $\bar{\nu}$ cm⁻¹: 3400 (OH), 1730 (C = O carboxyl), 1660 (C = O Flavone), 1610 (Ar), 1495, 1250, 1165, 1025, 825. MS: m/e (rel. int. %). (a) Glycoside: 314 (A+H, 100), 162 (B_1^+ , 13), 153 [(A_1+H)⁺, 44.4], 152 $(A_1^{+}, 3.7)$ (b) Perdeuteromethyl ether of the glycoside: 575 (M+, 11.0), 540 (M-35, 3.0), 331 (M-244, 42.0), 244 (M-331, 23), 210 (Glur-34, 100), 175 (36), 147 (53), 122 (40), 107 (80), 88 (35), 81 (61), 72 (34), 43 (85); ¹H NMR: (DMSO- d_6 +TFA-d, TMS int.): δ 3.21–3.60 ppm (m, 3H, H-2", 3", 4"), 3.82, 3.85 (s, 6H, OMe-3', 4'), 4.05 (m, 1H, H-5"), 5.18 (br, 1H, H-1"), 6.40 (d, J=2 Hz, 1H, H-6), 6.76 (d, J=2 Hz, 1H, H-8), 6.80 (s, 1H, H-3), 6.98 (d, J=8, 5 Hz, 1H, H-5'), 7.32–7.67 (m, 2H, H-2', 6').

- (a) Acid hydrolysis of 3',4'-di-O-methylluteolin-7-O-glucuronide. Acid hydrolysis of the glycoside (10 mg) in MeOH (2 ml) with 5% aq. HCl (8 ml) by heating at 100° for 5 hr gave a mixture of aglycone and the unchanged compound which were separated by PLC (microcrystalline cellulose, 15% aq. HOAc). The aglycone showed the same UV characteristics as earlier recorded for luteolin 3',4'-di-O-methyl ether [6] and gave the same mp as the synthetic compound [2] (mp 279-280°). The sugar was characterized as glucuronic acid by paper chromatography [7].
- (b) Acetylation of 3',4'-di-O-methylluteolin-7-O-glucuronide. A mixture of the glycoside (25 mg) in 1 ml Py and 5 ml Ac₂O was kept at room temp. for 56 hr, poured into crushed ice (50 g). The resulting solid gave an amorphous substance (7 mg) from dry CHCl₃-petrol, mp 132-144°.
- (c) Hydriodic acid treatment of 3',4'-di-O-methylluteolin-7-O-glucuronide. Gentle reflux of the glycoside (8 mg) in a mixture of H1 (0.5 ml) and phenol (0.1 ml) and usual work-up yielded a green-yellow solid, separating from MeOH as a yellow crystalline solid and identified as luteolin by direct comparison with an authentic sample.

Acknowledgement—One of the authors (D. G.) is grateful to CSIR, New Delhi, India, for financial assistance.

REFERENCES

- Besson, E., Chopin, J., Krishnaswami, L. and Krishnamurthy, H. G. (1977) Phytochemistry 16, 498.
- 2. Budweg, W. (1970) Dissertation, München.
- Seligmann, O. and Wagner, H. (1978) Tetrahedron 34, 3299.
- Adinarayana, D., Gunasekar, D., Seligmann, O. and Wagner, H. (1980) Phytochemistry 19, 483.
- Wagner, H., Danninger, H., Seligmann, O. and Farkas, L. (1970) Chem. Ber. 103, 3674.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970)
 The Systematic Identification of Flavonoids, p. 104.
 Springer, New York.
- Markham, K. R. and Porter, L. J. (1974) Phytochemistry 13, 1937.